- cross-posted to:
- technology@lemmy.ml
- cross-posted to:
- technology@lemmy.ml
Despite its name, the infrastructure used by the “cloud” accounts for more global greenhouse emissions than commercial flights. In 2018, for instance, the 5bn YouTube hits for the viral song Despacito used the same amount of energy it would take to heat 40,000 US homes annually.
Large language models such as ChatGPT are some of the most energy-guzzling technologies of all. Research suggests, for instance, that about 700,000 litres of water could have been used to cool the machines that trained ChatGPT-3 at Microsoft’s data facilities.
Additionally, as these companies aim to reduce their reliance on fossil fuels, they may opt to base their datacentres in regions with cheaper electricity, such as the southern US, potentially exacerbating water consumption issues in drier parts of the world.
Furthermore, while minerals such as lithium and cobalt are most commonly associated with batteries in the motor sector, they are also crucial for the batteries used in datacentres. The extraction process often involves significant water usage and can lead to pollution, undermining water security. The extraction of these minerals are also often linked to human rights violations and poor labour standards. Trying to achieve one climate goal of limiting our dependence on fossil fuels can compromise another goal, of ensuring everyone has a safe and accessible water supply.
Moreover, when significant energy resources are allocated to tech-related endeavours, it can lead to energy shortages for essential needs such as residential power supply. Recent data from the UK shows that the country’s outdated electricity network is holding back affordable housing projects.
In other words, policy needs to be designed not to pick sectors or technologies as “winners”, but to pick the willing by providing support that is conditional on companies moving in the right direction. Making disclosure of environmental practices and impacts a condition for government support could ensure greater transparency and accountability.
Gaming actually provides a real benefit for people, and resources spent on it mostly linearly provide that benefit (yes some people are addicted or etc, but people need enriching activities and gaming can be such an activity in moderation).
AI doesn’t provide much benefit yet, outside of very narrow uses, and its usefulness is mostly predicated on its continued growth of ability. The problem is pretrained transformers have stopped seeing linear growth with injection of resources, so either the people in charge admit its all a sham, or they push non linear amounts of resources at it hoping to fake growing ability long enough to achieve a new actual breakthrough.
I’m going to assume that when you say “AI” you’re referring to LLMs like chatGPT. Otherwise I can easily point to tons of benefits that AI models provide to a wide variety of industries (and that are already in use today).
Even then, if we restrict your statement to LLMs, who are you to say that I can’t use an LLM as a dungeon master for a quick round of DnD? That has about as much purpose as gaming does, therefore it’s providing a real benefit for people in that aspect.
Beyond gaming, LLMs can also be used for brainstorming ideas, summarizing documents, and even for help with generating code in every programming language. There are very real benefits here and they are already being used in this way.
And as far as resources are concerned, there are newer models being released all the time that are better and more efficient than the last. Most recently we had Llama 3 released (just last month), so I’m not sure how you’re jumping to conclusions that we’ve hit some sort of limit in terms of efficiency with resources required to run these models (and that’s also ignoring the advances being made at a hardware level).
Because of Llama 3, we’re essentially able to have something like our own personal GLaDOS right now: https://www.reddit.com/r/LocalLLaMA/comments/1csnexs/local_glados_now_running_on_windows_11_rtx_2060/
https://github.com/dnhkng/GlaDOS
Go ahead and point. I’m going to assume when you say “AI” that you mean almost anything except actual intelligence.
You read too many headlines and not enough papers. There is a massive list of advancements that AI has brought about. Hell, there is even a massive list of advancements that you personally benefit from daily. You might not realize it, but you are constantly benefiting from super efficient methods of matrix multiplications that AI has discovered. You benefit from drugs that have been discovered by AI. Guess what what has made google the top search engine for 20 years? AI efficiency gains. The list goes on and on…
People in this thread think AI is just the funny screenshot they saw on social media and concluded that they are smart and AI is dumb.
Absolutely. I am surprised, I would expect more from people who would end up at a site like this.